數(shù)三有哪些 數(shù)三先學(xué)什么比較好

盤螭2022-11-18 13:03:292036

數(shù)學(xué)三包含什么內(nèi)容?數(shù)三主要包括哪些內(nèi)容,考研數(shù)3是什么?

本文導(dǎo)航

高等數(shù)學(xué)三包括哪些內(nèi)容

數(shù) 學(xué) 三

考試科目 微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)

試 卷 結(jié) 構(gòu)

(-)總分 試卷滿分為150分

(二)內(nèi)容比例 微積分約56% 線性代數(shù)約22% 概率論與數(shù)理統(tǒng)計(jì)約22%

(三)題型比例 填空題與選擇題約45% 解答題(包括證明題)約55%

注:考試時(shí)間為 180分鐘

微 積 分

一、函數(shù)、極限、連續(xù)

考試內(nèi)容

函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、隱函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及圖形 初等函數(shù) 函數(shù)關(guān)系的建立

數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無(wú)窮小量和無(wú)窮大量的概念及關(guān)系 無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限:

,

函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

考試要求

1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系.

2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.

3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.

4.掌握基本初等函數(shù)的性質(zhì)及其圖形,理解初等函數(shù)的概念.

5.了解數(shù)列極限和函數(shù)極限(包括左、右極限)的概念.

6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法.

7.理解無(wú)窮小量的概念和基本性質(zhì),掌握無(wú)窮小量的比較方法.了解無(wú)窮大量的概念及其與無(wú)窮小量的關(guān)系.

8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)), 會(huì)判別函數(shù)間斷點(diǎn)的類型.

9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值與最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì).

二、一元函數(shù)微分學(xué)

考試內(nèi)容

導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線與法線 導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法 高階導(dǎo)數(shù) 一階微分形式不變性 微分中值定理 洛必達(dá)(L’Hospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值與最小值

考試要求

1. 理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會(huì)求平面曲線的切線方程和法線方程.

2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù) 會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)法.

3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù).

4.了解微分的概念,導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會(huì)求函數(shù)的微分.

5.理解羅爾(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解柯西(Cauchy)中值定理,掌握這三個(gè)定理的簡(jiǎn)單應(yīng)用.

6.會(huì)用洛必達(dá)法則求極限.

7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念 掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用.

8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線.

9.會(huì)描繪簡(jiǎn)單函數(shù)的圖形.

三、一元函數(shù)積分學(xué)

考試內(nèi)容

原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓一萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法和分部積分法 反常(廣義)積分 積分的應(yīng)用

考試要求

1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式;掌握不定積分的換元積分法與分部積分法.

2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù) 掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.

3.會(huì)利用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用題.

4.了解反常積分的概念,會(huì)計(jì)算反常積分.

四、多元函數(shù)微積分學(xué)

考試內(nèi)容

多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)性的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算 多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法 二階偏導(dǎo)數(shù) 全微分 多元函數(shù)的極值和條件極值、最大值和最小值 二重積分的概念、基本性質(zhì)和計(jì)算 無(wú)界區(qū)域上簡(jiǎn)單的廣義二重積分

考試要求

1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.

2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).

3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)用多元隱函數(shù)的偏導(dǎo)數(shù).

4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決簡(jiǎn)單的應(yīng)用問(wèn)題.

5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),了解無(wú)界區(qū)域上較簡(jiǎn)單的廣義二重積分并會(huì)計(jì)算.

五、無(wú)窮級(jí)數(shù)

考試內(nèi)容

常數(shù)項(xiàng)級(jí)數(shù)收斂與發(fā)散的概念 收斂級(jí)數(shù)的和的概念 級(jí)數(shù)的基本性質(zhì)與收斂的必要條件 幾何級(jí)數(shù)與p級(jí)數(shù)及其收斂性 正項(xiàng)級(jí)數(shù)收斂性的判別 任意項(xiàng)級(jí)數(shù)的絕對(duì)收斂與條件收斂 交錯(cuò)級(jí)數(shù)與萊布尼茨定理 冪級(jí)數(shù)及其收斂半徑、收斂區(qū)問(wèn)(指開(kāi)區(qū)間)和收斂域 冪級(jí)數(shù)的和函數(shù) 冪級(jí)數(shù)在收斂區(qū)間內(nèi)的基本性質(zhì) 簡(jiǎn)單冪級(jí)數(shù)的和函數(shù)的求法

初等函數(shù)的冪級(jí)數(shù)展開(kāi)式

考試要求

1.了解級(jí)數(shù)的收斂與發(fā)散、收斂級(jí)數(shù)的和的概念.

2.掌握級(jí)數(shù)的基本性質(zhì)及級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)及p 級(jí)數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級(jí)數(shù)收斂性的比較判別法和比值判別法,會(huì)用根值判別法.

3.了解任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念以及絕對(duì)收斂與收斂的關(guān)系,掌握交錯(cuò)級(jí)數(shù)的萊布尼茨判別法.

4.會(huì)求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間及收斂域.

5.了解冪級(jí)數(shù)在收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)微分和逐項(xiàng)積分),會(huì)求簡(jiǎn)單冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的和函數(shù),并會(huì)由此求出某些數(shù)項(xiàng)級(jí)數(shù)的和.

6. 掌握 、 、 、 及 的麥克勞林(Maclaurin)展開(kāi)式,會(huì)用它們將簡(jiǎn)單函數(shù)間接展開(kāi)成冪級(jí)數(shù).

六、常微分方程與差分方程

考試內(nèi)容

微分方程的概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程及簡(jiǎn)單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數(shù)線性差分方程 微分方程與差分方程的簡(jiǎn)單應(yīng)用

考試要求

1.了解微分方程及其階、解、通解、初始條件和特解等概念.

2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法.

3.會(huì)解二階常系數(shù)齊次線性微分方程.

4. 了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù),以及它們的和與乘積的二階常系數(shù)非齊次線性微分方程.

5.了解差分與差分方程及其通解與特解等概念.

6.掌握一階常系數(shù)線性差分方程的求解方法.

7.會(huì)用微分方程和差分方程求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問(wèn)題.

Back

線 性 代 數(shù)

一、行列式

考試內(nèi)容

行列式的概念和基本性質(zhì) 行列式按行(列)展開(kāi)定理

考試要求

1.理解行列式的概念,掌握行列式的性質(zhì).

2. 會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式.

二、矩陣

考試內(nèi)容

矩陣的概念 矩陣的線性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式

矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價(jià) 分塊矩陣及其運(yùn)算

考試要求

1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣的定義和性質(zhì),理解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì).

2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣的乘積的行列式的性質(zhì).

3.理解逆矩陣的概念、掌握逆矩陣的性以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣.

4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.

5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則.

三、向量

考試內(nèi)容

向量的概念 向量的線性組合與線性表示 向量組線性相關(guān)與線性元關(guān) 向量組的極大線性元關(guān)組 等價(jià)向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系

向量的內(nèi)積 線性無(wú)關(guān)向量組的正交規(guī)范化方法

考試要求

1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則.

2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法.

3.理解向量組的極大無(wú)關(guān)組的概念,會(huì)求向量組的極大無(wú)關(guān)組及秩.

4.理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.

5.了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法

四、線性方程組

考試內(nèi)容

線性方程組的克萊姆(Cramer)法則 線性方程組有解和無(wú)解的判定 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系 非齊次線性方程組的通解

考試要求

1.會(huì)用克萊姆法則解線性方程組.

2. 掌握非齊次線性方程組有解和無(wú)解的判定方法.

3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.

4.理解非齊次線性方程組的結(jié)構(gòu)及通解的概念.

5. 掌握用初等行變換求解線性方程組的方法.

五、矩陣的特征值和特征向量

考試內(nèi)容

矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣 實(shí)對(duì)稱矩陣的特征值和特征向量及相似對(duì)角矩陣

考試要求

1.理解矩陣的特征值、特征向量等概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法.

2.理解矩陣相似的概念、掌握相似矩陣的性質(zhì),了解矩陣可對(duì)角化的充分條件和必要條件,掌握將矩陣化為相似對(duì)角矩陣的方法.

3.掌握實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì).

六、二次型

考試內(nèi)容

二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性

考試要求

1.了解二次型的概念,會(huì)用矩陣形式表示二次型,了解合同變換和合同矩陣的概念.

2.理解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會(huì)甩正交變換和配方法化二次型為標(biāo)準(zhǔn)形.

3.理解正定二次型、正定矩陣的概念,并掌握其判別法.

Back

概 率 論 與 數(shù) 理 統(tǒng) 計(jì)

一、隨機(jī)事件和概率

考試內(nèi)容

隨機(jī)事件與樣本空間 事件的關(guān)系與運(yùn)算 完備事件組 概率的概念 概率的基本性質(zhì) 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨(dú)立性

獨(dú)立重復(fù)事件

考試要求

1.了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件間的關(guān)系及運(yùn)算.

2. 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率和幾何型概率,掌握概率的加法、乘法公式、全概率公式及貝葉斯(Bayes)公式等.

3.理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法.

二、隨機(jī)變量及其分布

考試內(nèi)容

隨機(jī)變量 隨機(jī)變量的分布函數(shù)及其性質(zhì) 離散型隨機(jī)變量的概率分布 連續(xù)型隨機(jī)變量的概率密度 常見(jiàn)隨機(jī)變量的分布 隨機(jī)變量函數(shù)的分布

考試要求

1.理解隨機(jī)變量的概念;理解分布函數(shù)

的概念及性質(zhì);會(huì)計(jì)算與隨機(jī)變量有關(guān)的事件的概率.

2.理解離散型隨機(jī)變量及其概率分布的概念,掌握0-1分布、二項(xiàng)分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用.

3. 理解泊松定理的結(jié)論和應(yīng)用條件,會(huì)用泊松分布近似表示二項(xiàng)分布.

4.理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布 、指數(shù)分布及其應(yīng)用,其中參數(shù)為 的指數(shù)分布的密度函數(shù)為

5.會(huì)求隨機(jī)變量函數(shù)的分布.

三、多維隨機(jī)變量的分布

考試內(nèi)容

多維隨機(jī)變量及其分布函數(shù) 二維離散型隨機(jī)變量概率分布、邊緣分布和條件分布、二維連續(xù)型隨機(jī)變量的概率密度 邊緣概率密度和條件密度 隨機(jī)變量的獨(dú)立性和不相關(guān)性 常見(jiàn)二維隨機(jī)變量的分布 兩個(gè)及兩個(gè)以上隨機(jī)變量的函數(shù)的分布

考試要求

1.理解多維隨機(jī)變量的分布的概念和基本性質(zhì).

2.理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度.掌握二維隨機(jī)變量的邊緣概率分布和條件分布.

3.理解隨機(jī)變量的獨(dú)立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件;理解隨機(jī)變量的不相關(guān)性與獨(dú)立性的關(guān)系.

4.掌握二維均勻分布和二維正態(tài)分布,理解其中參數(shù)的概率意義.

5.會(huì)根據(jù)兩個(gè)隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布;會(huì)根據(jù)多個(gè)相互獨(dú)立隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布.

四、隨機(jī)變量的數(shù)字特征

考試內(nèi)容

隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì) 隨機(jī)變量函數(shù)的數(shù)學(xué)期望 切比雪夫(Chebyshev)不等式 矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)

考試要求

1.理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征.

2.會(huì)隨機(jī)變量函數(shù)的數(shù)學(xué)期望.

3.掌握切比雪夫不等式.

五、大數(shù)定律和中心極限定理

考試內(nèi)容

切比雪夫(Chebyhev)大數(shù)定律 伯努利(Bernoulli)大數(shù)定律 辛欽(Khinchine)大數(shù)定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列維-林德伯格(Levy-Lindberg)定理

考試要求

1.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律).

2.了解棣莫弗-拉普拉斯中心極限定理(二項(xiàng)分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理),并會(huì)用相關(guān)定理近似計(jì)算有關(guān)隨機(jī)事件的概率.

六、數(shù)理統(tǒng)計(jì)的基本概念

考試內(nèi)容

總體 個(gè)體 簡(jiǎn)單隨機(jī)樣本 統(tǒng)計(jì)量 經(jīng)驗(yàn)分布函數(shù) 樣本均值 樣本方方差和樣本矩 分布 分布 分布 分位數(shù) 正態(tài)總體的常用抽樣分布

考試要求

1.理解總體、簡(jiǎn)單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為:

.

2.了解產(chǎn)生 變量、 變量和 變量的典型模型;理解標(biāo)準(zhǔn)正態(tài)分布、 分布、 分布和 分布的分位數(shù),會(huì)查相應(yīng)的數(shù)值表.

3.掌握正態(tài)總體的抽樣分布:樣本均值、樣本方差、樣本矩、樣本均值差、樣本方差比的抽樣分布.

4.理解經(jīng)驗(yàn)分布函數(shù)的概念和性質(zhì),會(huì)根據(jù)樣本值求經(jīng)驗(yàn)分布函數(shù).

七、參數(shù)估計(jì)

考試內(nèi)容

點(diǎn)估計(jì)的概念 估計(jì)量與估計(jì)值 矩估計(jì)法 最大似然估計(jì)法 估計(jì)量的評(píng)選 標(biāo)準(zhǔn) 區(qū)間估計(jì)的概念 單個(gè)正態(tài)總體均值的區(qū)間估計(jì) 單個(gè)正態(tài)總體方差和標(biāo)準(zhǔn)差的區(qū)間估計(jì) 兩個(gè)正態(tài)總體的均值差和方差比的區(qū)間估計(jì)

考試要求

1.理解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值的概念;了解估計(jì)量的無(wú)偏性、有效性(最小方差性)和一致性(相合性)的概念,并會(huì)驗(yàn)正估計(jì)量的無(wú)偏性.

2.掌握矩估計(jì)法(一階、二階矩)和最大似然估計(jì)法

3.掌握建立未知參數(shù)的(雙側(cè)和單側(cè))置信區(qū)間的一般方法;掌握正態(tài)總體均值、方差、標(biāo)準(zhǔn)差、矩以及與其相聯(lián)系的數(shù)值特征的置信區(qū)間的求法.

4.掌握兩個(gè)正態(tài)總體的均值差和方差比及相關(guān)數(shù)字特征的置信區(qū)間的求法.

八、假設(shè)檢驗(yàn)

考試內(nèi)容

顯著性檢驗(yàn) 假設(shè)檢驗(yàn)的兩類錯(cuò)誤 單個(gè)及兩個(gè)正態(tài)總體的均值和方差的假設(shè)檢驗(yàn)

考試要求

1.理解“假設(shè)”的概念和基本類型;理解顯著性檢驗(yàn)的基本思想,掌握假設(shè)檢驗(yàn)的基本步驟;會(huì)構(gòu)造簡(jiǎn)單假設(shè)的顯著性檢驗(yàn).

2.理解假設(shè)檢驗(yàn)可能產(chǎn)生的兩類錯(cuò)誤,對(duì)于較簡(jiǎn)單的情形,會(huì)計(jì)算兩類錯(cuò)誤的概率.

3.掌握單個(gè)及兩個(gè)正態(tài)總體的均值和方差的假設(shè)檢驗(yàn).

數(shù)學(xué)資料陳文登的歸納的不錯(cuò),不過(guò)開(kāi)始看挺困難的,深度也大。李永樂(lè),李正元的也不錯(cuò),對(duì)歷年真題總結(jié)很有針對(duì)性。 至于當(dāng)年考研大綱一般六月下旬教育部推出,書(shū)店都有賣的。

數(shù)三先學(xué)什么比較好

2010全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱

數(shù)學(xué)三

考試科目

微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)

試卷結(jié)構(gòu)

一、 總分

試卷滿分為150分,考試時(shí)間180分鐘

二、 內(nèi)容比例

微積分 約56 %

線性代數(shù) 約22 %

概率論與數(shù)理統(tǒng)計(jì) 約22 %

三、 題型結(jié)構(gòu)

單項(xiàng)選擇題 8小題,每小題4分,共32分

填空題 6小題,每小題4分,共24分

解答題(包括證明題) 9小題,共94分

微積分

一、 函數(shù)、極限、連續(xù)

考試內(nèi)容

函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立

數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系,無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較,極限的四則運(yùn)算,極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則,兩個(gè)重要極限:

,

函數(shù)連續(xù)的概念,函數(shù)間斷點(diǎn)的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。

考試要求

1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系。

2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。

3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。

4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。

5.了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。

6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法。

7.理解無(wú)窮小量的概念和基本性質(zhì),掌握無(wú)窮小量的比較方法,了解無(wú)窮大量的概念及其無(wú)窮小量的關(guān)系。

8.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會(huì)判斷函數(shù)間斷點(diǎn)的類型。

9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。

二、 一元函數(shù)微分學(xué)

考試內(nèi)容

導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線與法線,導(dǎo)數(shù)和微分的四則運(yùn)算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法,高階導(dǎo)數(shù),一階微分形式的不變性,微分中值定理,洛必達(dá)(L’Hospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線,函數(shù)圖形的描繪,函數(shù)的最大值與最小值

考試要求

1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會(huì)求平面曲線的切線方程和法線方程。

2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)數(shù)。

3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。

4.了解微分的概念、導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會(huì)求函數(shù)的微分。

5.理解羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握這四個(gè)定理的簡(jiǎn)單應(yīng)用。

6.會(huì)用洛必達(dá)法則求極限。

7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用。

8. 會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù),當(dāng) 時(shí),f(x)的圖形是凹的;當(dāng) 時(shí),f(x)的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線。

三、 一元函數(shù)積分學(xué)

考試內(nèi)容

原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導(dǎo)數(shù),牛頓—萊布尼茨(Newton-Leibniz)公式,不定積分和定積分的換元積分法與分部積分法,反常(廣義)積分,定積分的應(yīng)用

考試要求

1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法。

2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓—萊布尼茨公式以及定積分的換元積分法和分部積分法。

3.會(huì)利用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問(wèn)題。

4.了解反常積分的概念,會(huì)計(jì)算反常積分。

四、 多元函數(shù)微積分學(xué)

考試內(nèi)容

多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì),多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算,多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法,二階偏導(dǎo)數(shù),全微分,多元函數(shù)的極值和條件極值、最大值和最小值,二重積分的概念、基本性質(zhì)和計(jì)算,無(wú)界區(qū)域上簡(jiǎn)單的反常二重積分

考試要求

1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。

2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。

3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)。

4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決簡(jiǎn)單的應(yīng)用問(wèn)題。

5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),了解無(wú)界區(qū)域上較簡(jiǎn)單的反常二重積分并會(huì)計(jì)算。

五、 無(wú)窮級(jí)數(shù)

考試內(nèi)容

常數(shù)項(xiàng)級(jí)數(shù)的收斂與發(fā)散的概念,收斂級(jí)數(shù)的和的概念,級(jí)數(shù)的基本性質(zhì)與收斂的必要條件,幾何級(jí)數(shù)與P級(jí)數(shù)及其收斂性,正項(xiàng)級(jí)數(shù)收斂性的判別法,任意項(xiàng)級(jí)數(shù)的絕對(duì)收斂與條件收斂,交錯(cuò)級(jí)數(shù)與萊布尼茨定理,冪級(jí)數(shù)及其收斂半徑、收斂區(qū)間(指開(kāi)區(qū)間)和收斂域,冪級(jí)數(shù)的和函數(shù),冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì),簡(jiǎn)單冪級(jí)數(shù)和函數(shù)的求法,初等函數(shù)的冪級(jí)數(shù)展開(kāi)式

考試要求

1.了解級(jí)數(shù)的收斂與發(fā)散、收斂級(jí)數(shù)的和的概念。

2.了解級(jí)數(shù)的基本性質(zhì)及級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)及P級(jí)數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級(jí)數(shù)收斂性的比較判別法和比值判別法。

3.了解任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念以及絕對(duì)收斂與收斂的關(guān)系,了解交錯(cuò)級(jí)數(shù)的萊布尼茨判別法。

4.會(huì)求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間及收斂域。

5.了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會(huì)求簡(jiǎn)單冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的和函數(shù),并會(huì)由此求出某些數(shù)項(xiàng)級(jí)數(shù)的和。

6.了解 , , , 與 的麥克勞林(Maclaurin)展開(kāi)式。

六、 常微分方程與差分方程

考試內(nèi)容

常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程及簡(jiǎn)單的非齊次線性微分方程,差分與差分方程的概念,差分方程的通解與特解,一階常系數(shù)線性差分方程,微分方程的簡(jiǎn)單應(yīng)用

考試要求

1.了解微分方程及其階、解、通解、初始條件和特解等概念。

2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法。

3.會(huì)解二階常系數(shù)齊次線性微分方程。

4.了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線性微分方程。

5.了解差分與差分方程及其通解與特解等概念。

6.了解一階常系數(shù)線性差分方程的求解方法。

7.會(huì)用微分方程求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問(wèn)題。

線性代數(shù)

一、 行列式

考試內(nèi)容

行列式的概念和基本性質(zhì),行列式按行(列)展開(kāi)定理

考試要求

1.了解行列式的概念,掌握行列式的性質(zhì)。

2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式。

二、 矩陣

考試內(nèi)容

矩陣的概念,矩陣的線性運(yùn)算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價(jià),分塊矩陣及其運(yùn)算

考試要求

1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì)。

2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。

3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣。

4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。

5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則。

三、 向量

考試內(nèi)容

向量的概念,向量的線性組合與線性表示,向量組的線性相關(guān)與線性無(wú)關(guān),向量組的極大線性無(wú)關(guān)組,等價(jià)向量組,向量組的秩,向量組的秩與矩陣的秩之間的關(guān)系,向量的內(nèi)積,線性無(wú)關(guān)向量組的正交規(guī)范化方法

考試要求

1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則。

2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法。

3.理解向量組的極大線性無(wú)關(guān)組的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩。

4.理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系。

5.了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法。

四、 線性方程組

考試內(nèi)容

線性方程組的克萊姆(Crammer)法則,線性方程組有解和無(wú)解的判定,齊次線性方程組的基礎(chǔ)解系和通解,非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系,非齊次線性方程組的通解

考試要求

1.會(huì)用克萊姆法則解線性方程組。

2.掌握非齊次線性方程組有解和無(wú)解的判定方法。

3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。

4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。

5.掌握用初等行變換求解線性方程組的方法。

五、 矩陣的特征值和特征向量

考試內(nèi)容

矩陣的特征值和特征向量的概念、性質(zhì),相似矩陣的概念及性質(zhì),矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣,實(shí)對(duì)稱矩陣的特征值和特征向量及相似對(duì)角矩陣

考試要求

1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法。

2.理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,掌握將矩陣化為相似對(duì)角矩陣的方法。

3. 掌握實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì)。

六、 二次型

考試內(nèi)容

二次型及其矩陣表示,合同變換與合同矩陣,二次型的秩,慣性定理,二次型的標(biāo)準(zhǔn)形和規(guī)范形,用正交變換和配方法化二次型為標(biāo)準(zhǔn)形,二次型及其矩陣的正定性

考試要求

1.了解二次型的概念,會(huì)用矩陣形式表示二次型,了解合同變換和合同矩陣的概念。

2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會(huì)用正交變換和配方法化二次型為標(biāo)準(zhǔn)形。

3.理解正定二次型、正定矩陣的概念,并掌握其判別法。

概率論與數(shù)理統(tǒng)計(jì)

一、 隨機(jī)事件和概率

考試內(nèi)容

隨機(jī)事件與樣本空間,事件的關(guān)系與運(yùn)算,完備事件組,概率的概念,概率的基本性質(zhì),古典型概率,幾何型概率,條件概率,概率的基本公式,事件的獨(dú)立性,獨(dú)立重復(fù)試驗(yàn)

考試要求

1.了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算。

2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。

3.理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法。

二、 隨機(jī)變量及其分布

考試內(nèi)容

隨機(jī)變量,隨機(jī)變量分布函數(shù)的概念及其性質(zhì),離散型隨機(jī)變量的概率分布,連續(xù)型隨機(jī)變量的概率密度,常見(jiàn)隨機(jī)變量的分布,隨機(jī)變量函數(shù)的分布

考試要求

1.理解隨機(jī)變量的概念,理解分布函數(shù)

的概念及性質(zhì),會(huì)計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率。

2.理解離散型隨機(jī)變量及其概率分布的概念,掌握0—1分布、二項(xiàng)分布B(n,p)、幾何分布、超幾何分布、泊松(Poisson)分布 及其應(yīng)用。

3.掌握泊松定理的結(jié)論和應(yīng)用條件,會(huì)用泊松分布近似表示二項(xiàng)分布。

4.理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布U(a,b)、正態(tài)分布 、指數(shù)分布及其應(yīng)用,其中參數(shù)為 ( )的指數(shù)分布 的概率密度為

5.會(huì)求隨機(jī)變量函數(shù)的分布。

三、 多維隨機(jī)變量的分布

考試內(nèi)容

多維隨機(jī)變量及其分布函數(shù),二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布,二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度,隨機(jī)變量的獨(dú)立性和不相關(guān)性,常見(jiàn)二維隨機(jī)變量的分布,兩個(gè)及兩個(gè)以上隨機(jī)變量的函數(shù)的分布

考試要求

1.理解多維隨機(jī)變量的分布函數(shù)的概念和基本性質(zhì)。

2.理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度,掌握二維隨機(jī)變量的邊緣分布和條件分布。

3.理解隨機(jī)變量的獨(dú)立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件,理解隨機(jī)變量的不相關(guān)性與獨(dú)立性的關(guān)系。

4.掌握二維均勻分布和二維正態(tài)分布 ,理解其中參數(shù)的意義。

5.會(huì)根據(jù)兩個(gè)隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布,會(huì)根據(jù)多個(gè)相互獨(dú)立隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布。

四、 隨機(jī)變量的數(shù)字特征

考試內(nèi)容

隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì),隨機(jī)變量函數(shù)的數(shù)學(xué)期望,切比雪夫(Chebyshew)不等式,矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)

考試要求

1.理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征。

2.會(huì)求隨機(jī)變量函數(shù)的數(shù)學(xué)期望。

3.了解切比雪夫不等式。

五、 大數(shù)定律和中心極限定理

考試內(nèi)容

切比雪夫大數(shù)定律,伯努利(Bernoulli)大數(shù)定律,辛欽(Khinchine)大數(shù)定律,棣莫弗—拉普拉斯(De Moivre-Laplace)定理,列維—林德伯格(Levy-Lindberg)定理

考試要求

1.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律)。

2.了解棣莫弗—拉普拉斯中心極限定理(二項(xiàng)分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理),并會(huì)用相關(guān)定理近似計(jì)算有關(guān)隨機(jī)事件的概率。

六、 數(shù)理統(tǒng)計(jì)的基本概念

考試內(nèi)容

總體,個(gè)體,簡(jiǎn)單隨機(jī)樣本,統(tǒng)計(jì)量,經(jīng)驗(yàn)分布函數(shù),樣本均值,樣本方差和樣本矩, 分布,t分布,F(xiàn)分布,分位數(shù),正態(tài)總體的常用抽樣分布

考試要求

1.了解總體、簡(jiǎn)單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為

2.了解產(chǎn)生 變量、t變量和F變量的典型模式;了解標(biāo)準(zhǔn)正態(tài)分布、 分布,t分布和F分布的上側(cè) 分位數(shù),會(huì)查相應(yīng)的數(shù)值表。

3.掌握正態(tài)總體的樣本均值、樣本方差、樣本矩的抽樣分布。

4.了解經(jīng)驗(yàn)分布函數(shù)的概念和性質(zhì)。

七、 參數(shù)估計(jì)

考試內(nèi)容

點(diǎn)估計(jì)的概念,估計(jì)量和估計(jì)值,矩估計(jì)法,最大似然估計(jì)法

考試要求

1.了解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值的概念。

2.掌握矩估計(jì)法(一階矩、二階矩)和最大似然估計(jì)法。

考研數(shù)3要復(fù)習(xí)多久

針對(duì)經(jīng)濟(jì)學(xué)和管理學(xué)類的為數(shù)學(xué)三(2009年之前管理類為數(shù)學(xué)三,經(jīng)濟(jì)類為數(shù)學(xué)四,2009年之后大綱將數(shù)學(xué)三數(shù)學(xué)四合并)。

數(shù)三大綱

考試科目

微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)

形式結(jié)構(gòu)

1、試卷滿分及考試時(shí)間

試卷滿分為150分,考試時(shí)間為180分鐘.

2、答題方式

答題方式為閉卷、筆試.

3、試卷內(nèi)容結(jié)構(gòu)

微積分 56%

線性代數(shù) 22%

概率論與數(shù)理統(tǒng)計(jì) 22%

4、試卷題型結(jié)構(gòu)

試卷題型結(jié)構(gòu)為:

單項(xiàng)選擇題選題8小題,每題4分,共32分

填空題 6小題,每題4分,共24分

解答題(包括證明題) 9小題,共94分

掃描二維碼推送至手機(jī)訪問(wèn)。

版權(quán)聲明:本文由尚恩教育網(wǎng)發(fā)布,如需轉(zhuǎn)載請(qǐng)注明出處。

本文鏈接:http://52reasonswhy.com/view/67266.html

標(biāo)簽: 數(shù)學(xué)

“數(shù)三有哪些 數(shù)三先學(xué)什么比較好” 的相關(guān)文章

怎么分塊算伴隨矩陣 怎么求伴隨矩陣

怎么分塊算伴隨矩陣 怎么求伴隨矩陣

哪位可以告訴我分塊矩陣的伴隨怎么求。?怎么求分塊矩陣的伴隨矩陣矩陣C=(AO)的?怎么求伴隨矩陣?怎么求分塊矩陣的伴隨矩陣?分塊矩陣的伴隨怎么求 會(huì)的來(lái)?本文導(dǎo)航哪位可以告訴我分塊矩陣的伴隨怎么求。。怎么求分塊矩陣的伴隨矩陣矩陣C=(AO)的怎么求伴隨矩陣怎么求分塊矩陣的伴隨矩陣分塊矩陣的伴隨怎么求...

什么叫求極限 函數(shù)求極限的例題完整步驟

什么叫求極限 函數(shù)求極限的例題完整步驟

什么叫極限值,怎么求(詳解)謝謝?不同類型,求極限的方法是什么?越詳細(xì)越好?求極限是什么?求極限的方法有哪些,求函數(shù)極限有什么方法?求極限求導(dǎo)是什么原理?本文導(dǎo)航典型極限公式求極限的題型方法總結(jié)求極限是高中題嗎求極限方法函數(shù)求極限的例題完整步驟求極限可以用求導(dǎo)公式嗎典型極限公式極限值么,不知道你是高...

619數(shù)學(xué)是什么意思 上海農(nóng)業(yè)大學(xué)數(shù)學(xué)專業(yè)怎么樣

619數(shù)學(xué)是什么意思 上海農(nóng)業(yè)大學(xué)數(shù)學(xué)專業(yè)怎么樣

問(wèn)一個(gè)考研小白問(wèn)題,619數(shù)學(xué)是什么?是自主命題的么??620化學(xué)又是什么。我該怎么復(fù)習(xí)。?考研數(shù)學(xué)619 考什么?是國(guó)家命題么?619數(shù)字在愛(ài)情里什么意思?你是河南農(nóng)業(yè)大學(xué)的??咨詢一下619數(shù)學(xué)是什么意思?都學(xué)什么東西?619是什么意思?數(shù)字876好還是619。本文導(dǎo)航考研數(shù)學(xué)301和302區(qū)別...

邏輯分冊(cè)錯(cuò)誤怎么辦 機(jī)工版邏輯分冊(cè)和邏輯精點(diǎn)有什么區(qū)別

邏輯分冊(cè)錯(cuò)誤怎么辦 機(jī)工版邏輯分冊(cè)和邏輯精點(diǎn)有什么區(qū)別

MBA聯(lián)考試卷中的邏輯題該怎么復(fù)習(xí)?396的邏輯寫(xiě)作怎么復(fù)習(xí)啊 都說(shuō)邏輯分冊(cè) 邏輯精點(diǎn)?華東理工大學(xué)mba(工商管理碩士)培訓(xùn)機(jī)構(gòu)哪個(gè)好,機(jī)工版邏輯分冊(cè)和邏輯精點(diǎn)有什么區(qū)別?考MBA的邏輯要怎么復(fù)習(xí)?管理類聯(lián)考復(fù)習(xí)問(wèn)題。本文導(dǎo)航MBA聯(lián)考試卷中的邏輯題該怎么復(fù)習(xí)?邏輯填空不可不知的六大解題技巧華東理...

線性代數(shù)強(qiáng)化用什么 考研數(shù)學(xué)一的線性代數(shù)用哪本教材好?

學(xué)習(xí)線性代數(shù)用什么教輔好?學(xué)習(xí)線性代數(shù)用什么書(shū)才好?考研線性代數(shù)教材哪一本,考研數(shù)學(xué)一的線性代數(shù)用哪本教材好,如何增強(qiáng)線性代數(shù)的應(yīng)用性(急?。烤€性代數(shù)到底有什么用?本文導(dǎo)航線性代數(shù)怎么復(fù)習(xí)得高分線性代數(shù)哪本教材通俗易懂考研線性代數(shù)用什么練習(xí)冊(cè)好考研數(shù)學(xué)一的線性代數(shù)用哪本教材好?線性代數(shù)及其應(yīng)用怎么自...

委培證明怎么開(kāi) 規(guī)培單位委培公函模板

關(guān)于委培研究生,關(guān)于委培研究生的問(wèn)題!,委培申請(qǐng)書(shū)怎么寫(xiě)?單位證明怎么開(kāi)?定向委培生單位開(kāi)具證明參加公務(wù)員或遴選報(bào)考的相關(guān)文件,93屆委培生能開(kāi)學(xué)歷證明嗎?本文導(dǎo)航關(guān)于委培研究生關(guān)于委培研究生的問(wèn)題??!規(guī)培單位委培公函模板單位證明怎么開(kāi)?定向委培生單位開(kāi)具證明參加公務(wù)員或遴選報(bào)考的相關(guān)文件93屆委培...

發(fā)表評(píng)論

訪客

◎歡迎參與討論,請(qǐng)?jiān)谶@里發(fā)表您的看法和觀點(diǎn)。