數(shù)三有哪些 數(shù)三先學(xué)什么比較好
數(shù)學(xué)三包含什么內(nèi)容?數(shù)三主要包括哪些內(nèi)容,考研數(shù)3是什么?
本文導(dǎo)航
高等數(shù)學(xué)三包括哪些內(nèi)容
數(shù) 學(xué) 三
考試科目 微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)
試 卷 結(jié) 構(gòu)
(-)總分 試卷滿分為150分
(二)內(nèi)容比例 微積分約56% 線性代數(shù)約22% 概率論與數(shù)理統(tǒng)計(jì)約22%
(三)題型比例 填空題與選擇題約45% 解答題(包括證明題)約55%
注:考試時(shí)間為 180分鐘
微 積 分
一、函數(shù)、極限、連續(xù)
考試內(nèi)容
函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、隱函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及圖形 初等函數(shù) 函數(shù)關(guān)系的建立
數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無(wú)窮小量和無(wú)窮大量的概念及關(guān)系 無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限:
,
函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
考試要求
1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系.
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,理解初等函數(shù)的概念.
5.了解數(shù)列極限和函數(shù)極限(包括左、右極限)的概念.
6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法.
7.理解無(wú)窮小量的概念和基本性質(zhì),掌握無(wú)窮小量的比較方法.了解無(wú)窮大量的概念及其與無(wú)窮小量的關(guān)系.
8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)), 會(huì)判別函數(shù)間斷點(diǎn)的類型.
9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值與最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì).
二、一元函數(shù)微分學(xué)
考試內(nèi)容
導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線與法線 導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法 高階導(dǎo)數(shù) 一階微分形式不變性 微分中值定理 洛必達(dá)(L’Hospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值與最小值
考試要求
1. 理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會(huì)求平面曲線的切線方程和法線方程.
2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù) 會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)法.
3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù).
4.了解微分的概念,導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會(huì)求函數(shù)的微分.
5.理解羅爾(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解柯西(Cauchy)中值定理,掌握這三個(gè)定理的簡(jiǎn)單應(yīng)用.
6.會(huì)用洛必達(dá)法則求極限.
7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念 掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用.
8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線.
9.會(huì)描繪簡(jiǎn)單函數(shù)的圖形.
三、一元函數(shù)積分學(xué)
考試內(nèi)容
原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓一萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法和分部積分法 反常(廣義)積分 積分的應(yīng)用
考試要求
1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式;掌握不定積分的換元積分法與分部積分法.
2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù) 掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.
3.會(huì)利用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用題.
4.了解反常積分的概念,會(huì)計(jì)算反常積分.
四、多元函數(shù)微積分學(xué)
考試內(nèi)容
多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)性的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算 多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法 二階偏導(dǎo)數(shù) 全微分 多元函數(shù)的極值和條件極值、最大值和最小值 二重積分的概念、基本性質(zhì)和計(jì)算 無(wú)界區(qū)域上簡(jiǎn)單的廣義二重積分
考試要求
1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.
2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).
3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)用多元隱函數(shù)的偏導(dǎo)數(shù).
4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決簡(jiǎn)單的應(yīng)用問(wèn)題.
5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),了解無(wú)界區(qū)域上較簡(jiǎn)單的廣義二重積分并會(huì)計(jì)算.
五、無(wú)窮級(jí)數(shù)
考試內(nèi)容
常數(shù)項(xiàng)級(jí)數(shù)收斂與發(fā)散的概念 收斂級(jí)數(shù)的和的概念 級(jí)數(shù)的基本性質(zhì)與收斂的必要條件 幾何級(jí)數(shù)與p級(jí)數(shù)及其收斂性 正項(xiàng)級(jí)數(shù)收斂性的判別 任意項(xiàng)級(jí)數(shù)的絕對(duì)收斂與條件收斂 交錯(cuò)級(jí)數(shù)與萊布尼茨定理 冪級(jí)數(shù)及其收斂半徑、收斂區(qū)問(wèn)(指開(kāi)區(qū)間)和收斂域 冪級(jí)數(shù)的和函數(shù) 冪級(jí)數(shù)在收斂區(qū)間內(nèi)的基本性質(zhì) 簡(jiǎn)單冪級(jí)數(shù)的和函數(shù)的求法
初等函數(shù)的冪級(jí)數(shù)展開(kāi)式
考試要求
1.了解級(jí)數(shù)的收斂與發(fā)散、收斂級(jí)數(shù)的和的概念.
2.掌握級(jí)數(shù)的基本性質(zhì)及級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)及p 級(jí)數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級(jí)數(shù)收斂性的比較判別法和比值判別法,會(huì)用根值判別法.
3.了解任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念以及絕對(duì)收斂與收斂的關(guān)系,掌握交錯(cuò)級(jí)數(shù)的萊布尼茨判別法.
4.會(huì)求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間及收斂域.
5.了解冪級(jí)數(shù)在收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)微分和逐項(xiàng)積分),會(huì)求簡(jiǎn)單冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的和函數(shù),并會(huì)由此求出某些數(shù)項(xiàng)級(jí)數(shù)的和.
6. 掌握 、 、 、 及 的麥克勞林(Maclaurin)展開(kāi)式,會(huì)用它們將簡(jiǎn)單函數(shù)間接展開(kāi)成冪級(jí)數(shù).
六、常微分方程與差分方程
考試內(nèi)容
微分方程的概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程及簡(jiǎn)單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數(shù)線性差分方程 微分方程與差分方程的簡(jiǎn)單應(yīng)用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法.
3.會(huì)解二階常系數(shù)齊次線性微分方程.
4. 了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù),以及它們的和與乘積的二階常系數(shù)非齊次線性微分方程.
5.了解差分與差分方程及其通解與特解等概念.
6.掌握一階常系數(shù)線性差分方程的求解方法.
7.會(huì)用微分方程和差分方程求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問(wèn)題.
Back
線 性 代 數(shù)
一、行列式
考試內(nèi)容
行列式的概念和基本性質(zhì) 行列式按行(列)展開(kāi)定理
考試要求
1.理解行列式的概念,掌握行列式的性質(zhì).
2. 會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式.
二、矩陣
考試內(nèi)容
矩陣的概念 矩陣的線性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式
矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價(jià) 分塊矩陣及其運(yùn)算
考試要求
1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣的定義和性質(zhì),理解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì).
2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣的乘積的行列式的性質(zhì).
3.理解逆矩陣的概念、掌握逆矩陣的性以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣.
4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.
5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則.
三、向量
考試內(nèi)容
向量的概念 向量的線性組合與線性表示 向量組線性相關(guān)與線性元關(guān) 向量組的極大線性元關(guān)組 等價(jià)向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系
向量的內(nèi)積 線性無(wú)關(guān)向量組的正交規(guī)范化方法
考試要求
1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則.
2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法.
3.理解向量組的極大無(wú)關(guān)組的概念,會(huì)求向量組的極大無(wú)關(guān)組及秩.
4.理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.
5.了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法
四、線性方程組
考試內(nèi)容
線性方程組的克萊姆(Cramer)法則 線性方程組有解和無(wú)解的判定 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系 非齊次線性方程組的通解
考試要求
1.會(huì)用克萊姆法則解線性方程組.
2. 掌握非齊次線性方程組有解和無(wú)解的判定方法.
3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.
4.理解非齊次線性方程組的結(jié)構(gòu)及通解的概念.
5. 掌握用初等行變換求解線性方程組的方法.
五、矩陣的特征值和特征向量
考試內(nèi)容
矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣 實(shí)對(duì)稱矩陣的特征值和特征向量及相似對(duì)角矩陣
考試要求
1.理解矩陣的特征值、特征向量等概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法.
2.理解矩陣相似的概念、掌握相似矩陣的性質(zhì),了解矩陣可對(duì)角化的充分條件和必要條件,掌握將矩陣化為相似對(duì)角矩陣的方法.
3.掌握實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì).
六、二次型
考試內(nèi)容
二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性
考試要求
1.了解二次型的概念,會(huì)用矩陣形式表示二次型,了解合同變換和合同矩陣的概念.
2.理解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會(huì)甩正交變換和配方法化二次型為標(biāo)準(zhǔn)形.
3.理解正定二次型、正定矩陣的概念,并掌握其判別法.
Back
概 率 論 與 數(shù) 理 統(tǒng) 計(jì)
一、隨機(jī)事件和概率
考試內(nèi)容
隨機(jī)事件與樣本空間 事件的關(guān)系與運(yùn)算 完備事件組 概率的概念 概率的基本性質(zhì) 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨(dú)立性
獨(dú)立重復(fù)事件
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件間的關(guān)系及運(yùn)算.
2. 理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率和幾何型概率,掌握概率的加法、乘法公式、全概率公式及貝葉斯(Bayes)公式等.
3.理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法.
二、隨機(jī)變量及其分布
考試內(nèi)容
隨機(jī)變量 隨機(jī)變量的分布函數(shù)及其性質(zhì) 離散型隨機(jī)變量的概率分布 連續(xù)型隨機(jī)變量的概率密度 常見(jiàn)隨機(jī)變量的分布 隨機(jī)變量函數(shù)的分布
考試要求
1.理解隨機(jī)變量的概念;理解分布函數(shù)
的概念及性質(zhì);會(huì)計(jì)算與隨機(jī)變量有關(guān)的事件的概率.
2.理解離散型隨機(jī)變量及其概率分布的概念,掌握0-1分布、二項(xiàng)分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用.
3. 理解泊松定理的結(jié)論和應(yīng)用條件,會(huì)用泊松分布近似表示二項(xiàng)分布.
4.理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布 、指數(shù)分布及其應(yīng)用,其中參數(shù)為 的指數(shù)分布的密度函數(shù)為
5.會(huì)求隨機(jī)變量函數(shù)的分布.
三、多維隨機(jī)變量的分布
考試內(nèi)容
多維隨機(jī)變量及其分布函數(shù) 二維離散型隨機(jī)變量概率分布、邊緣分布和條件分布、二維連續(xù)型隨機(jī)變量的概率密度 邊緣概率密度和條件密度 隨機(jī)變量的獨(dú)立性和不相關(guān)性 常見(jiàn)二維隨機(jī)變量的分布 兩個(gè)及兩個(gè)以上隨機(jī)變量的函數(shù)的分布
考試要求
1.理解多維隨機(jī)變量的分布的概念和基本性質(zhì).
2.理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度.掌握二維隨機(jī)變量的邊緣概率分布和條件分布.
3.理解隨機(jī)變量的獨(dú)立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件;理解隨機(jī)變量的不相關(guān)性與獨(dú)立性的關(guān)系.
4.掌握二維均勻分布和二維正態(tài)分布,理解其中參數(shù)的概率意義.
5.會(huì)根據(jù)兩個(gè)隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布;會(huì)根據(jù)多個(gè)相互獨(dú)立隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布.
四、隨機(jī)變量的數(shù)字特征
考試內(nèi)容
隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì) 隨機(jī)變量函數(shù)的數(shù)學(xué)期望 切比雪夫(Chebyshev)不等式 矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)
考試要求
1.理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征.
2.會(huì)隨機(jī)變量函數(shù)的數(shù)學(xué)期望.
3.掌握切比雪夫不等式.
五、大數(shù)定律和中心極限定理
考試內(nèi)容
切比雪夫(Chebyhev)大數(shù)定律 伯努利(Bernoulli)大數(shù)定律 辛欽(Khinchine)大數(shù)定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列維-林德伯格(Levy-Lindberg)定理
考試要求
1.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律).
2.了解棣莫弗-拉普拉斯中心極限定理(二項(xiàng)分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理),并會(huì)用相關(guān)定理近似計(jì)算有關(guān)隨機(jī)事件的概率.
六、數(shù)理統(tǒng)計(jì)的基本概念
考試內(nèi)容
總體 個(gè)體 簡(jiǎn)單隨機(jī)樣本 統(tǒng)計(jì)量 經(jīng)驗(yàn)分布函數(shù) 樣本均值 樣本方方差和樣本矩 分布 分布 分布 分位數(shù) 正態(tài)總體的常用抽樣分布
考試要求
1.理解總體、簡(jiǎn)單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為:
.
2.了解產(chǎn)生 變量、 變量和 變量的典型模型;理解標(biāo)準(zhǔn)正態(tài)分布、 分布、 分布和 分布的分位數(shù),會(huì)查相應(yīng)的數(shù)值表.
3.掌握正態(tài)總體的抽樣分布:樣本均值、樣本方差、樣本矩、樣本均值差、樣本方差比的抽樣分布.
4.理解經(jīng)驗(yàn)分布函數(shù)的概念和性質(zhì),會(huì)根據(jù)樣本值求經(jīng)驗(yàn)分布函數(shù).
七、參數(shù)估計(jì)
考試內(nèi)容
點(diǎn)估計(jì)的概念 估計(jì)量與估計(jì)值 矩估計(jì)法 最大似然估計(jì)法 估計(jì)量的評(píng)選 標(biāo)準(zhǔn) 區(qū)間估計(jì)的概念 單個(gè)正態(tài)總體均值的區(qū)間估計(jì) 單個(gè)正態(tài)總體方差和標(biāo)準(zhǔn)差的區(qū)間估計(jì) 兩個(gè)正態(tài)總體的均值差和方差比的區(qū)間估計(jì)
考試要求
1.理解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值的概念;了解估計(jì)量的無(wú)偏性、有效性(最小方差性)和一致性(相合性)的概念,并會(huì)驗(yàn)正估計(jì)量的無(wú)偏性.
2.掌握矩估計(jì)法(一階、二階矩)和最大似然估計(jì)法
3.掌握建立未知參數(shù)的(雙側(cè)和單側(cè))置信區(qū)間的一般方法;掌握正態(tài)總體均值、方差、標(biāo)準(zhǔn)差、矩以及與其相聯(lián)系的數(shù)值特征的置信區(qū)間的求法.
4.掌握兩個(gè)正態(tài)總體的均值差和方差比及相關(guān)數(shù)字特征的置信區(qū)間的求法.
八、假設(shè)檢驗(yàn)
考試內(nèi)容
顯著性檢驗(yàn) 假設(shè)檢驗(yàn)的兩類錯(cuò)誤 單個(gè)及兩個(gè)正態(tài)總體的均值和方差的假設(shè)檢驗(yàn)
考試要求
1.理解“假設(shè)”的概念和基本類型;理解顯著性檢驗(yàn)的基本思想,掌握假設(shè)檢驗(yàn)的基本步驟;會(huì)構(gòu)造簡(jiǎn)單假設(shè)的顯著性檢驗(yàn).
2.理解假設(shè)檢驗(yàn)可能產(chǎn)生的兩類錯(cuò)誤,對(duì)于較簡(jiǎn)單的情形,會(huì)計(jì)算兩類錯(cuò)誤的概率.
3.掌握單個(gè)及兩個(gè)正態(tài)總體的均值和方差的假設(shè)檢驗(yàn).
數(shù)學(xué)資料陳文登的歸納的不錯(cuò),不過(guò)開(kāi)始看挺困難的,深度也大。李永樂(lè),李正元的也不錯(cuò),對(duì)歷年真題總結(jié)很有針對(duì)性。 至于當(dāng)年考研大綱一般六月下旬教育部推出,書(shū)店都有賣的。
數(shù)三先學(xué)什么比較好
2010全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱
數(shù)學(xué)三
考試科目
微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)
試卷結(jié)構(gòu)
一、 總分
試卷滿分為150分,考試時(shí)間180分鐘
二、 內(nèi)容比例
微積分 約56 %
線性代數(shù) 約22 %
概率論與數(shù)理統(tǒng)計(jì) 約22 %
三、 題型結(jié)構(gòu)
單項(xiàng)選擇題 8小題,每小題4分,共32分
填空題 6小題,每小題4分,共24分
解答題(包括證明題) 9小題,共94分
微積分
一、 函數(shù)、極限、連續(xù)
考試內(nèi)容
函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立
數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系,無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較,極限的四則運(yùn)算,極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則,兩個(gè)重要極限:
,
函數(shù)連續(xù)的概念,函數(shù)間斷點(diǎn)的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。
考試要求
1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系。
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。
5.了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。
6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法。
7.理解無(wú)窮小量的概念和基本性質(zhì),掌握無(wú)窮小量的比較方法,了解無(wú)窮大量的概念及其無(wú)窮小量的關(guān)系。
8.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會(huì)判斷函數(shù)間斷點(diǎn)的類型。
9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。
二、 一元函數(shù)微分學(xué)
考試內(nèi)容
導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線與法線,導(dǎo)數(shù)和微分的四則運(yùn)算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法,高階導(dǎo)數(shù),一階微分形式的不變性,微分中值定理,洛必達(dá)(L’Hospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線,函數(shù)圖形的描繪,函數(shù)的最大值與最小值
考試要求
1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會(huì)求平面曲線的切線方程和法線方程。
2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)數(shù)。
3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。
4.了解微分的概念、導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會(huì)求函數(shù)的微分。
5.理解羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握這四個(gè)定理的簡(jiǎn)單應(yīng)用。
6.會(huì)用洛必達(dá)法則求極限。
7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用。
8. 會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù),當(dāng) 時(shí),f(x)的圖形是凹的;當(dāng) 時(shí),f(x)的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線。
三、 一元函數(shù)積分學(xué)
考試內(nèi)容
原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導(dǎo)數(shù),牛頓—萊布尼茨(Newton-Leibniz)公式,不定積分和定積分的換元積分法與分部積分法,反常(廣義)積分,定積分的應(yīng)用
考試要求
1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法。
2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓—萊布尼茨公式以及定積分的換元積分法和分部積分法。
3.會(huì)利用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問(wèn)題。
4.了解反常積分的概念,會(huì)計(jì)算反常積分。
四、 多元函數(shù)微積分學(xué)
考試內(nèi)容
多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì),多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算,多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法,二階偏導(dǎo)數(shù),全微分,多元函數(shù)的極值和條件極值、最大值和最小值,二重積分的概念、基本性質(zhì)和計(jì)算,無(wú)界區(qū)域上簡(jiǎn)單的反常二重積分
考試要求
1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。
2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。
3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)。
4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決簡(jiǎn)單的應(yīng)用問(wèn)題。
5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),了解無(wú)界區(qū)域上較簡(jiǎn)單的反常二重積分并會(huì)計(jì)算。
五、 無(wú)窮級(jí)數(shù)
考試內(nèi)容
常數(shù)項(xiàng)級(jí)數(shù)的收斂與發(fā)散的概念,收斂級(jí)數(shù)的和的概念,級(jí)數(shù)的基本性質(zhì)與收斂的必要條件,幾何級(jí)數(shù)與P級(jí)數(shù)及其收斂性,正項(xiàng)級(jí)數(shù)收斂性的判別法,任意項(xiàng)級(jí)數(shù)的絕對(duì)收斂與條件收斂,交錯(cuò)級(jí)數(shù)與萊布尼茨定理,冪級(jí)數(shù)及其收斂半徑、收斂區(qū)間(指開(kāi)區(qū)間)和收斂域,冪級(jí)數(shù)的和函數(shù),冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì),簡(jiǎn)單冪級(jí)數(shù)和函數(shù)的求法,初等函數(shù)的冪級(jí)數(shù)展開(kāi)式
考試要求
1.了解級(jí)數(shù)的收斂與發(fā)散、收斂級(jí)數(shù)的和的概念。
2.了解級(jí)數(shù)的基本性質(zhì)及級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)及P級(jí)數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級(jí)數(shù)收斂性的比較判別法和比值判別法。
3.了解任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念以及絕對(duì)收斂與收斂的關(guān)系,了解交錯(cuò)級(jí)數(shù)的萊布尼茨判別法。
4.會(huì)求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間及收斂域。
5.了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會(huì)求簡(jiǎn)單冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的和函數(shù),并會(huì)由此求出某些數(shù)項(xiàng)級(jí)數(shù)的和。
6.了解 , , , 與 的麥克勞林(Maclaurin)展開(kāi)式。
六、 常微分方程與差分方程
考試內(nèi)容
常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程及簡(jiǎn)單的非齊次線性微分方程,差分與差分方程的概念,差分方程的通解與特解,一階常系數(shù)線性差分方程,微分方程的簡(jiǎn)單應(yīng)用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念。
2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法。
3.會(huì)解二階常系數(shù)齊次線性微分方程。
4.了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線性微分方程。
5.了解差分與差分方程及其通解與特解等概念。
6.了解一階常系數(shù)線性差分方程的求解方法。
7.會(huì)用微分方程求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問(wèn)題。
線性代數(shù)
一、 行列式
考試內(nèi)容
行列式的概念和基本性質(zhì),行列式按行(列)展開(kāi)定理
考試要求
1.了解行列式的概念,掌握行列式的性質(zhì)。
2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式。
二、 矩陣
考試內(nèi)容
矩陣的概念,矩陣的線性運(yùn)算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價(jià),分塊矩陣及其運(yùn)算
考試要求
1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì)。
2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。
3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣。
4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。
5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則。
三、 向量
考試內(nèi)容
向量的概念,向量的線性組合與線性表示,向量組的線性相關(guān)與線性無(wú)關(guān),向量組的極大線性無(wú)關(guān)組,等價(jià)向量組,向量組的秩,向量組的秩與矩陣的秩之間的關(guān)系,向量的內(nèi)積,線性無(wú)關(guān)向量組的正交規(guī)范化方法
考試要求
1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則。
2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法。
3.理解向量組的極大線性無(wú)關(guān)組的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩。
4.理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系。
5.了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法。
四、 線性方程組
考試內(nèi)容
線性方程組的克萊姆(Crammer)法則,線性方程組有解和無(wú)解的判定,齊次線性方程組的基礎(chǔ)解系和通解,非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系,非齊次線性方程組的通解
考試要求
1.會(huì)用克萊姆法則解線性方程組。
2.掌握非齊次線性方程組有解和無(wú)解的判定方法。
3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。
4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。
5.掌握用初等行變換求解線性方程組的方法。
五、 矩陣的特征值和特征向量
考試內(nèi)容
矩陣的特征值和特征向量的概念、性質(zhì),相似矩陣的概念及性質(zhì),矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣,實(shí)對(duì)稱矩陣的特征值和特征向量及相似對(duì)角矩陣
考試要求
1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法。
2.理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,掌握將矩陣化為相似對(duì)角矩陣的方法。
3. 掌握實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì)。
六、 二次型
考試內(nèi)容
二次型及其矩陣表示,合同變換與合同矩陣,二次型的秩,慣性定理,二次型的標(biāo)準(zhǔn)形和規(guī)范形,用正交變換和配方法化二次型為標(biāo)準(zhǔn)形,二次型及其矩陣的正定性
考試要求
1.了解二次型的概念,會(huì)用矩陣形式表示二次型,了解合同變換和合同矩陣的概念。
2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會(huì)用正交變換和配方法化二次型為標(biāo)準(zhǔn)形。
3.理解正定二次型、正定矩陣的概念,并掌握其判別法。
概率論與數(shù)理統(tǒng)計(jì)
一、 隨機(jī)事件和概率
考試內(nèi)容
隨機(jī)事件與樣本空間,事件的關(guān)系與運(yùn)算,完備事件組,概率的概念,概率的基本性質(zhì),古典型概率,幾何型概率,條件概率,概率的基本公式,事件的獨(dú)立性,獨(dú)立重復(fù)試驗(yàn)
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算。
2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。
3.理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法。
二、 隨機(jī)變量及其分布
考試內(nèi)容
隨機(jī)變量,隨機(jī)變量分布函數(shù)的概念及其性質(zhì),離散型隨機(jī)變量的概率分布,連續(xù)型隨機(jī)變量的概率密度,常見(jiàn)隨機(jī)變量的分布,隨機(jī)變量函數(shù)的分布
考試要求
1.理解隨機(jī)變量的概念,理解分布函數(shù)
的概念及性質(zhì),會(huì)計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率。
2.理解離散型隨機(jī)變量及其概率分布的概念,掌握0—1分布、二項(xiàng)分布B(n,p)、幾何分布、超幾何分布、泊松(Poisson)分布 及其應(yīng)用。
3.掌握泊松定理的結(jié)論和應(yīng)用條件,會(huì)用泊松分布近似表示二項(xiàng)分布。
4.理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布U(a,b)、正態(tài)分布 、指數(shù)分布及其應(yīng)用,其中參數(shù)為 ( )的指數(shù)分布 的概率密度為
5.會(huì)求隨機(jī)變量函數(shù)的分布。
三、 多維隨機(jī)變量的分布
考試內(nèi)容
多維隨機(jī)變量及其分布函數(shù),二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布,二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度,隨機(jī)變量的獨(dú)立性和不相關(guān)性,常見(jiàn)二維隨機(jī)變量的分布,兩個(gè)及兩個(gè)以上隨機(jī)變量的函數(shù)的分布
考試要求
1.理解多維隨機(jī)變量的分布函數(shù)的概念和基本性質(zhì)。
2.理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度,掌握二維隨機(jī)變量的邊緣分布和條件分布。
3.理解隨機(jī)變量的獨(dú)立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件,理解隨機(jī)變量的不相關(guān)性與獨(dú)立性的關(guān)系。
4.掌握二維均勻分布和二維正態(tài)分布 ,理解其中參數(shù)的意義。
5.會(huì)根據(jù)兩個(gè)隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布,會(huì)根據(jù)多個(gè)相互獨(dú)立隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布。
四、 隨機(jī)變量的數(shù)字特征
考試內(nèi)容
隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì),隨機(jī)變量函數(shù)的數(shù)學(xué)期望,切比雪夫(Chebyshew)不等式,矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)
考試要求
1.理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征。
2.會(huì)求隨機(jī)變量函數(shù)的數(shù)學(xué)期望。
3.了解切比雪夫不等式。
五、 大數(shù)定律和中心極限定理
考試內(nèi)容
切比雪夫大數(shù)定律,伯努利(Bernoulli)大數(shù)定律,辛欽(Khinchine)大數(shù)定律,棣莫弗—拉普拉斯(De Moivre-Laplace)定理,列維—林德伯格(Levy-Lindberg)定理
考試要求
1.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律)。
2.了解棣莫弗—拉普拉斯中心極限定理(二項(xiàng)分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理),并會(huì)用相關(guān)定理近似計(jì)算有關(guān)隨機(jī)事件的概率。
六、 數(shù)理統(tǒng)計(jì)的基本概念
考試內(nèi)容
總體,個(gè)體,簡(jiǎn)單隨機(jī)樣本,統(tǒng)計(jì)量,經(jīng)驗(yàn)分布函數(shù),樣本均值,樣本方差和樣本矩, 分布,t分布,F(xiàn)分布,分位數(shù),正態(tài)總體的常用抽樣分布
考試要求
1.了解總體、簡(jiǎn)單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2.了解產(chǎn)生 變量、t變量和F變量的典型模式;了解標(biāo)準(zhǔn)正態(tài)分布、 分布,t分布和F分布的上側(cè) 分位數(shù),會(huì)查相應(yīng)的數(shù)值表。
3.掌握正態(tài)總體的樣本均值、樣本方差、樣本矩的抽樣分布。
4.了解經(jīng)驗(yàn)分布函數(shù)的概念和性質(zhì)。
七、 參數(shù)估計(jì)
考試內(nèi)容
點(diǎn)估計(jì)的概念,估計(jì)量和估計(jì)值,矩估計(jì)法,最大似然估計(jì)法
考試要求
1.了解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值的概念。
2.掌握矩估計(jì)法(一階矩、二階矩)和最大似然估計(jì)法。
考研數(shù)3要復(fù)習(xí)多久
針對(duì)經(jīng)濟(jì)學(xué)和管理學(xué)類的為數(shù)學(xué)三(2009年之前管理類為數(shù)學(xué)三,經(jīng)濟(jì)類為數(shù)學(xué)四,2009年之后大綱將數(shù)學(xué)三數(shù)學(xué)四合并)。
數(shù)三大綱
考試科目
微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)
形式結(jié)構(gòu)
1、試卷滿分及考試時(shí)間
試卷滿分為150分,考試時(shí)間為180分鐘.
2、答題方式
答題方式為閉卷、筆試.
3、試卷內(nèi)容結(jié)構(gòu)
微積分 56%
線性代數(shù) 22%
概率論與數(shù)理統(tǒng)計(jì) 22%
4、試卷題型結(jié)構(gòu)
試卷題型結(jié)構(gòu)為:
單項(xiàng)選擇題選題8小題,每題4分,共32分
填空題 6小題,每題4分,共24分
解答題(包括證明題) 9小題,共94分
掃描二維碼推送至手機(jī)訪問(wèn)。
版權(quán)聲明:本文由尚恩教育網(wǎng)發(fā)布,如需轉(zhuǎn)載請(qǐng)注明出處。