怎么判斷極限是否連續(xù)的 怎么判斷一個(gè)函數(shù)是否連續(xù)

午后茶香2022-08-24 22:08:033035

怎么判斷一個(gè)函數(shù)是否連續(xù)?如何判斷一個(gè)函數(shù)是否存在極限,是否連續(xù),是否可導(dǎo),是否可微?關(guān)于高數(shù)極限的問題 怎么看函數(shù)是連續(xù)的?

本文導(dǎo)航

怎么判斷一個(gè)函數(shù)是否連續(xù)

沒有什么別的辦法,就是根據(jù)連續(xù)的定義。

如果只需判斷(不需要證明)的話比較簡(jiǎn)單,因?yàn)榍叭擞薪Y(jié)論,可以拿來直接用: 初等函數(shù)(或它們的組合)在其定義域上都是連續(xù)函數(shù)

如何判斷一個(gè)函數(shù)是否存在極限,是否連續(xù),是否可導(dǎo),是否可微?

極限的概念是整個(gè)微積分的基礎(chǔ),需要深刻地理解,由極限的概念才能引出連續(xù)、導(dǎo)數(shù)、積分等概念。極限的概念首先是從數(shù)列的極限引出的。對(duì)于任意小的正數(shù)E,如果存在自然數(shù)M,使所有N》M時(shí),|A(N)-A|都小于E,則數(shù)列的極限為A。極限不是相等,而是無限接近。而函數(shù)的極限是指在X0的一個(gè)臨域內(nèi)(不包含X0這一點(diǎn)),如果對(duì)于任意小的正數(shù)E,都存在正數(shù)Q,使所有(X0-Q,X0+Q)內(nèi)的點(diǎn),都滿足|F(X)-A|《E,則F(X)在X0點(diǎn)的極限為A。很多求極限的題目都可以用極限的定義直接求出。

  例如F(X)=(X^2-3X+2)/(X-2), X=2不在函數(shù)定義域內(nèi),但對(duì)于任何X不等于2,F(xiàn)(X)=X-1,因此在X無限接近2,但不等于2時(shí),F(xiàn)(X)無限接近1,因此F(X)在2處的極限為1。

  連續(xù)的概念。如果函數(shù)在X0的極限存在,函數(shù)在X0有定義,而且極限值等于函數(shù)值,則稱F(X)在X0點(diǎn)連續(xù)。以上的三個(gè)條件缺一不可。

  在上例中,F(xiàn)(X)在X=2時(shí)極限存在,但在X=2這一點(diǎn)沒有定義,所以函數(shù)在X=2不連續(xù);

  如果我們定義F(2)=1,補(bǔ)上“缺口”,則函數(shù)在X=2變成連續(xù)的;

  如果我們定義F(2)=3,雖然函數(shù)在X=2時(shí),極限值和函數(shù)值都存在,但不相等,那么函數(shù)在X=2還是不連續(xù)。

  由連續(xù)又引出了左極限、右極限和左連續(xù)、右連續(xù)的概念。函數(shù)值等于左極限為左連續(xù),函數(shù)值等于右極限為右連續(xù)。如果函數(shù)在X0點(diǎn)左右極限都存在,且都等于函數(shù)值,則函數(shù)在X=X0時(shí)連續(xù)。這個(gè)定義是解決分段函數(shù)連續(xù)問題的最重要的、幾乎是唯一的方法。

  如果函數(shù)在某個(gè)區(qū)間內(nèi)每一點(diǎn)都連續(xù),在區(qū)間的左右端點(diǎn)分別左右連續(xù)(對(duì)閉區(qū)間而言),則稱函數(shù)在這個(gè)區(qū)間上連續(xù)。

  導(dǎo)數(shù)的概念。導(dǎo)數(shù)是函數(shù)的變化率,直觀地看是指切線的斜率。略有不同的是,切線可以平行于Y軸,此時(shí)斜率為無窮大,因此導(dǎo)數(shù)不存在,但切線存在。

  導(dǎo)數(shù)的求法也是一個(gè)極限的求法。對(duì)于X=X0,在X0附近另找一點(diǎn)X1,求X0與X1連線的斜率。當(dāng)X1無限靠近X0,但不與X0重合時(shí),這兩點(diǎn)連線的斜率,就是F(X)在X=X0處的導(dǎo)數(shù)。關(guān)于導(dǎo)數(shù)的題目多數(shù)可用導(dǎo)數(shù)的定義直接解決。教科書中給出了所有基本函數(shù)的導(dǎo)數(shù)公式,如果自己能用導(dǎo)數(shù)的定義都推導(dǎo)一遍,理解和記憶會(huì)更深刻。其中對(duì)數(shù)的導(dǎo)數(shù)公式推導(dǎo)中用到了重要極限:limx-->0 (1+x)^(1/x)=e。

  導(dǎo)數(shù)同樣分為左導(dǎo)數(shù)和右導(dǎo)數(shù)。導(dǎo)數(shù)存在的條件是:F(X)在X=X0連續(xù),左右導(dǎo)數(shù)存在且相等。這個(gè)定義是解決分段函數(shù)可導(dǎo)問題的最重要的、幾乎是唯一的方法。

  如果函數(shù)在某個(gè)區(qū)間內(nèi)每一點(diǎn)都可導(dǎo),在區(qū)間的左右端點(diǎn)分別左右導(dǎo)數(shù)存在(對(duì)閉區(qū)間而言),則稱函數(shù)在這個(gè)區(qū)間上可導(dǎo)。

  復(fù)合函數(shù)的導(dǎo)數(shù),例如f[u(x)],是集合A中的自變量x,產(chǎn)生微小變化dx,引起集合B中對(duì)應(yīng)數(shù)u的微小變化du,u的變化又引起集合C中的對(duì)應(yīng)數(shù)f(u)的變化,則復(fù)合函數(shù)的導(dǎo)函數(shù)f’[u(x)]=df(u)/dx=df(u)/du * du/dx=f’(u)*u‘(x)

  導(dǎo)數(shù)在生活中的例子最常見的是距離與時(shí)間的關(guān)系。物體在極其微小的時(shí)間內(nèi),移動(dòng)了極其微小的距離,二者的比值就是物體在這一刻的速度。對(duì)于自由落體運(yùn)動(dòng),下落距離S=1/2gt^2,則物體在時(shí)間t0的速度為V(t0)=[S(t0+a)-S(t0)]/a, 當(dāng)a趨近于0時(shí)的值,等于gt0; 而速度隨時(shí)間的增加而增加,變化的比率g稱為加速度。加速度是距離對(duì)時(shí)間的二階導(dǎo)數(shù)。

  從直觀上看,可導(dǎo)意味著光滑的、沒有尖角,因?yàn)樵诩饨翘幾笥覍?dǎo)數(shù)不相等。有笑話說一位教授對(duì)學(xué)生抱怨道:“這飯館讓人怎么吃飯?你看這碗口,處處不可導(dǎo)!”

  積分的概念。從面積上理解,積分就是積少成多,把無限個(gè)面積趨近于0的線條,累積在一起,就成為大于0的面積。我們可以把一塊圖形分割為狹長(zhǎng)的長(zhǎng)方形(長(zhǎng)方形的高度都取函數(shù)在左端或右端的函數(shù)值),分別計(jì)算各個(gè)長(zhǎng)方形的面積再加總,可近似地得出圖形的面積。當(dāng)我們把長(zhǎng)方形的寬度設(shè)定得越來越窄,計(jì)算結(jié)果就越來越精確,與圖形實(shí)際面積的差距越來越小。如果函數(shù)的積分存在,則長(zhǎng)方形寬度趨近于0時(shí),求出的長(zhǎng)方形面積總和的極限存在,且等于圖形的實(shí)際面積。這里又是一個(gè)極限的概念。

  如果函數(shù)存在不連續(xù)的點(diǎn),但在該點(diǎn)左右極限都存在,函數(shù)仍是可積的。只要間斷點(diǎn)的個(gè)數(shù)是有限的,則它們代表的線條面積總和為0,不影響計(jì)算結(jié)果。

  在廣義積分中,允許函數(shù)在無限區(qū)間內(nèi)積分,或某些點(diǎn)的函數(shù)值趨向無窮大,只要積分的極限存在,函數(shù)都是可積的。

  嚴(yán)格地說,我們只會(huì)計(jì)算長(zhǎng)方形的面積。從我們介紹的積分的求法看,我們實(shí)際上是把求面積化為了數(shù)列求和的問題,即求數(shù)列的前N項(xiàng)和S(N),在N趨近于無窮大時(shí)的極限。很多時(shí)候,求積分和求無限數(shù)列的和是可以相互轉(zhuǎn)換的。當(dāng)我們深刻地理解了積分的定義和熟練地掌握了積分公式之后,我們同樣可用它來解決相當(dāng)棘手的數(shù)列求和問題。

  例如:求LIM Na正無窮大時(shí),1/N*[1+1/(1+1/N)+1/(1+2/N)+。。。+1/(1+(N-1)/N)+1/2]的值。

  看似無從下手,可當(dāng)我們把它轉(zhuǎn)化為一連串的小長(zhǎng)方形的面積之后,不禁會(huì)恍然大悟:這不是F(X)=1/X在[1,2]上的積分嗎?從而輕松得出結(jié)果為ln2。

  除了基本的積分公式外,換元法和分步法是常用的積分方法。換元積分法的實(shí)質(zhì)是把原函數(shù)化為形式簡(jiǎn)單的復(fù)合函數(shù);分步積分法的要領(lǐng)是:在∫udv=uv-∫vdu中,函數(shù)u微分后應(yīng)該變簡(jiǎn)單(比如次數(shù)降低),而函數(shù)v積分后不會(huì)變得更復(fù)雜。

關(guān)于高數(shù)極限的問題 怎么看函數(shù)是連續(xù)的

初等函數(shù)在其定義區(qū)間內(nèi)連續(xù)。

掃描二維碼推送至手機(jī)訪問。

版權(quán)聲明:本文由尚恩教育網(wǎng)發(fā)布,如需轉(zhuǎn)載請(qǐng)注明出處。

本文鏈接:http://52reasonswhy.com/view/55278.html

標(biāo)簽: 物理

“怎么判斷極限是否連續(xù)的 怎么判斷一個(gè)函數(shù)是否連續(xù)” 的相關(guān)文章

支持力是彈力嗎 支持力和重力彈力的區(qū)別

支持力是彈力?為什么老師有時(shí)候說彈力有時(shí)候說支持力?彈力和支持力是一個(gè)意思嗎?支持力屬于彈力嗎?地面對(duì)人的支持力是不是彈力,彈力和作用力什么區(qū)別?那支持力是作用力還是彈力?彈力指物體發(fā)生彈性形變而產(chǎn)生的力,但支持力的發(fā)生不一定使物體發(fā)生彈性形變,為什么說支持力是彈力呢?本文導(dǎo)航壓力和支持力是否是彈力...

電子科學(xué)技術(shù) 電子科學(xué)與技術(shù)就業(yè)排名

電子科學(xué)技術(shù) 電子科學(xué)與技術(shù)就業(yè)排名

電子科學(xué)技術(shù)學(xué)什么?電子科學(xué)技術(shù)就業(yè)方向,電子科學(xué)與技術(shù)專業(yè)畢業(yè)后有什么就業(yè)方向?前景怎樣?電子科學(xué)與技術(shù)和計(jì)算機(jī)科學(xué)與技術(shù)有什么區(qū)別,哪個(gè)專業(yè)好,哪個(gè)就業(yè)容易?電子科學(xué)與技術(shù)是學(xué)什么的就業(yè)方向?電子科學(xué)與技術(shù),電子信息工程,計(jì)算機(jī)科學(xué)與技術(shù)這三個(gè)專業(yè)哪個(gè)好,哪個(gè)就業(yè)好,謝謝。本文導(dǎo)航電子科學(xué)與技術(shù)...

分子科學(xué)與工程 每個(gè)大學(xué)都有什么專業(yè)

分子科學(xué)與工程 每個(gè)大學(xué)都有什么專業(yè)

分子科學(xué)與工程專業(yè)的就業(yè)方向,分子科學(xué)與工程專業(yè)的主干課程,分子科學(xué)與工程專業(yè)的前景怎么樣?分子科學(xué)與工程專業(yè)就業(yè)前景,天大分子科學(xué)與工程 到底是干什么的?大學(xué)有什么專業(yè)?本文導(dǎo)航化學(xué)與分子工程專業(yè)就業(yè)單位分子科學(xué)與工程就業(yè)前景如何分子工程專業(yè)好嗎北大化學(xué)與分子工程專業(yè)就業(yè)前景天大分子科學(xué)與工程碩士...

數(shù)學(xué)中重心是什么 重心以什么為權(quán)重

數(shù)學(xué)中重心是什么 重心以什么為權(quán)重

數(shù)學(xué)中的重心,中心,垂心的定義和性質(zhì),高中數(shù)學(xué):重心垂心中心內(nèi)心外心的定義分別是什么?速度,謝謝了?(數(shù)學(xué))三角形中的中心,重心,垂心,都分別指什么,特點(diǎn)是什么?數(shù)學(xué)上的重心,內(nèi)心,外心,垂心分別是什么線的交點(diǎn),各有什么性質(zhì)?什么是重心?重心是什么?本文導(dǎo)航數(shù)學(xué)中的重心怎么找高中數(shù)學(xué)中重心是什么正三...

理論力學(xué)研究的是什么 理論力學(xué)研究方法有哪三個(gè)

理論力學(xué)研究的是什么 理論力學(xué)研究方法有哪三個(gè)

理論力學(xué)是什么?理論力學(xué)這門課主要講什么?理論力學(xué)學(xué)什么?理論力學(xué)研究的物體是,三大力學(xué)指的是什么么?大學(xué)理論力學(xué)。本文導(dǎo)航理論力學(xué)怎么分析理論力學(xué)到底有多難大學(xué)里的理論力學(xué)好嗎理論力學(xué)研究方法有哪三個(gè)力學(xué)的分類有哪幾種大學(xué)理論力學(xué)用什么搜題理論力學(xué)怎么分析高中物理的延伸,就是高中物理的力學(xué)部分,如...

計(jì)算電磁學(xué)哪些高校強(qiáng) 中國(guó)科學(xué)技術(shù)大學(xué)數(shù)學(xué)就業(yè)前景

計(jì)算電磁學(xué)哪些高校強(qiáng) 中國(guó)科學(xué)技術(shù)大學(xué)數(shù)學(xué)就業(yè)前景

中科院的計(jì)算數(shù)學(xué)方向的“機(jī)器學(xué)習(xí)與數(shù)據(jù)挖掘、計(jì)算電磁學(xué)”好不好?請(qǐng)教?hào)|南大學(xué)研究生在電磁場(chǎng)和微波技術(shù)各個(gè)研究方向的特點(diǎn),比如射頻,電磁兼容等等,上海交通大學(xué) 電磁場(chǎng)與無線技術(shù) 研究生專業(yè) 怎么樣 相比較成電西電東南?香港城市大學(xué)的電磁場(chǎng)專業(yè)怎么樣?中國(guó)哪一所學(xué)校的物理系最強(qiáng),中國(guó)科學(xué)技術(shù)大學(xué)哪些專業(yè)...

發(fā)表評(píng)論

訪客

◎歡迎參與討論,請(qǐng)?jiān)谶@里發(fā)表您的看法和觀點(diǎn)。